
Note on Software
Construction and Reliability

for Privately Signed Root Zones
Paul Vixie, TISF

November, 2016

Seoul, KR

Odd use of “git”

• Three coordinators, who are peers wrt system ops/config

• We have a three-way shared read-write “git” repo

• At TISF, we fetch from the file system, to avoid key management:
• git remote –v
origin /home/yeticonf/dm (fetch)
origin /home/yeticonf/dm (push)

• At TISF, we push to all three coordinators:
• git remote –v
origin yeticonf@yeti-conf.dns-lab.net:dm (fetch)
origin yeticonf@yeti-conf.dns-lab.net:dm (push)
origin yeticonf@yeti-dns.tisf.net:dm (push)
origin yeticonf@yeti-repository.wide.ad.jp:dm (push)

Limitations and Lessons of using “git” this way

• Won’t support a large set of project members, or high update rates

• Difficult to set up, verify, monitor, and debug

• Can require out-of-band notification of changes

• Inadequately protects the KSK and ZSKs

• In all ways, unsuitable for Internet-scale production work

• Can work for science and enterprise networks

“To Hell With It, Let’s Just Put It In Cron”

• crontab –l
SHELL=/bin/sh
MAILTO=vixie@tisf.net
40 * * * * cd ~/work/yeti-dm && sh scripts/cronrun-often.sh

• One of the coordinators runs at :00, one at :20, one at :40

• Most hours, there is no new IANA zone, so, no work to be done

• cronrun-often.sh only produces output on work (or failures)

mailto:MAILTO=vixie@tisf.net

The Cron Job

• grep '^[#$]' work/yeti-dm/scripts/cronrun-often.sh
#!/bin/sh
first, fetch the iana zone from f-root, and fetch yaml config
from yeticonf
second, remake the conf-include file (allow-transfer, also-
notify)
third, create the yeti zone based on the iana zone, and sign it
fourth and finally, reload and reconfig as needed

• if dnssec-signzone -Q -R -o . -x yeti-root.dns $keys \
 > dnssec-signzone.out 2>&1
 then
 rndc -s yeti-dm reload . 2>&1 \
 | grep -v 'zone reload up-to-date‘
 else
 cat dnssec-signzone.out
 exit 1
 fi

The YAML File

• - name: ns-yeti.bondis.org
 public_ip: 2a02:2810:0:405::250
- name: yeti-ns.ix.ru
 notify_addr:
 - 2001:6d0:fffc:4000::2
 - 2001:6d0:6d06::53
 public_ip: 2001:6d0:6d06::53
 transfer_net:
 - 2001:6d0:fffc:4000::2
 - 2001:6d0:6d06::53

The conf-include File

• allow-transfer {
 …
 2a02:cdc5:9715:0:185:5:203:53;
 …
 2001:6d0:fffc:4000::2; 2001:6d0:6d06::53;
 …
also-notify {
 …
 2a02:cdc5:9715:0:185:5:203:53;
 …
 2001:6d0:fffc:4000::2; 2001:6d0:6d06::53;
 …

Lessons So Far

• Need to automate the creation of new MZSK’s

• Need to crypt and sign the KSK and MZSK’s at rest

• Need to automate the RFC 5011 timer-based key management

• Need external reviewers and users – publication would add sunshine

• Could be used to create locally signed root zones for local production

• Perl isn’t dead (Net::DNS is particularly useful for this application)

• ISC BIND9 server and utilities are ideally suited to this task

• Bourne shell isn’t dead, and makes for easy-to-review mainline

